Unconditionally Energy Stable Immersed Boundary Method with Application to Vesicle Dynamics

نویسندگان

  • Wei-Fan Hu
  • Ming-Chih Lai
چکیده

We develop an unconditionally energy stable immersed boundary method, and apply it to simulate 2D vesicle dynamics. We adopt a semi-implicit boundary forcing approach, where the stretching factor used in the forcing term can be computed from the derived evolutional equation. By using the projection method to solve the fluid equations, the pressure is decoupled and we have a symmetric positive definite system that can be solved efficiently. The method can be shown to be unconditionally stable, in the sense that the total energy is decreasing. A resulting modification benefits from this improved numerical stability, as the time step size can be significantly increased (the severe time step restriction in an explicit boundary forcing scheme is avoided). As an application, we use our scheme to simulate vesicle dynamics in Navier-Stokes flow. AMS subject classifications: 65M06, 76D07

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Implicit Solvers for the Immersed Boundary Equations

Explicit time discretizations of the Immersed Boundary method are known to require small timesteps to maintain stability. A number of implicit methods have been introduced to alleviate this restriction to allow for a more efficient method, but many of these methods still have a stability restriction on the timestep. Furthermore, almost no comparisons have appeared in the literature of the relat...

متن کامل

Removing the Stiffness of Elastic Force from the Immersed Boundary Method for the 2D Stokes Equations

The Immersed Boundary method has evolved into one of the most useful computational methods in studying fluid structure interaction. On the other hand, the Immersed Boundary method is also known to suffer from a severe timestep stability restriction when using an explicit time discretization. In this paper, we propose several efficient semiimplicit schemes to remove this stiffness from the Immer...

متن کامل

An efficient semi-implicit immersed boundary method for the Navier-Stokes equations

The Immersed Boundary method is one of the most useful computational methods in studying fluid structure interaction. On the other hand, the Immersed Boundary method is also known to require small time steps to maintain stability when solved with an explicit method. Many implicit or approximately implicit methods have been proposed in the literature to remove this severe time step stability con...

متن کامل

An immersed boundary method for simulating vesicle dynamics in three dimensions

We extend our previous immersed boundary (IB) method for 3D axisymmetric inextensible vesicle in Navier-Stokes flows, [W.-F. Hu, Y. Kim, M.-C. Lai, An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows, J. Comput. Phys. 257 (2014)] to general three dimensions. Despite a similar spirit in numerical algorithms to the axisymmetric...

متن کامل

Unconditionally stable discretizations of the immersed boundary equations

The immersed boundary (IB) method is known to require small timesteps to maintain stability when solved with an explicit or approximately implicit method. Many implicit methods have been proposed to try to mitigate this timestep restriction, but none are known to be unconditionally stable, and the observed instability of even some of the fully implicit methods is not well understood. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013